ID. \qquad Seat No.RO......

Sirindhorn International Institute of Technology Thammasat University

Midterm Examination: Semester 1/2009

Course Title: ECS203 (Basic Electrical Engineering)
Instructor: Asst. Prof. Dr.Prapun Suksompong
Date/Time: December 25, 2009 / 9:00-12:00

Instructions:

$>$ This examination has......11.....pages (including this cover page).
$>$ Conditions of Examination:
\ldots. Closed book
(No dictionary, \square No calculator $\boldsymbol{\square}$ Calculator (e.g. FX-991MS) allowed)
.............Open book
.............Semi-Closed book \qquad sheet(s) $\square 1$ page \square both sides of A4 paper note)
$>$ Read these instructions and the questions carefully.
$>$ Students are not allowed to be out of the examination room during examination.
Going to the restroom may result in score deduction.
$>$ Turn off all communication devices and place them with other personal belongings in the area designated by the proctors or outside the test room.
$>(1 \mathrm{pt})$ Write your name, student ID, section, and seat number clearly in the spaces provided on the top of this sheet. Then, write your first name and the last three digits of your ID in the spaces provided on the top of each page of your examination paper, starting from page 2.
$>$ The examination paper is not allowed to be taken out of the examination room. Violation may result in score deduction.
$>$ Unless instructed otherwise, write down all the steps that you have done to obtain your answers. You may not get any credit even when your final answer is correct without showing how you get your answer.
$>$ When not explicitly stated/defined, all notations and definitions follow ones given in lecture.
> Units are important.
$>$ Some points are reserved for accuracy of the answers and also for reducing answers into their simplest forms.
$>$ Points marked with * indicate challenging problems.
$>$ Do not cheat. Do not panic. Allocate your time wisely.
$>$ Dr. Prapun will visit each exam room regularly. In general, there is no need to ask the proctor to call for Dr. Prapun.

1. (5 pt) Suppose you want to use a 40Ω resistor but you only have one 20Ω resistor, one 30Ω resistor, and one 60Ω resistor. How would you connect the three resistors to get 40Ω ?
Draw how the three resistors are connected and show your calculation of the equivalent resistance.
2. (29 pt) In this question, you must use the specified techniques to solve the problem. There will be no credit given if you do not follow the instructions. As always, your score depends strongly on your explanation of your answer. If the explanation is incomplete, zero score may be given even when the final answer is correct.

Let

$$
\mathrm{V}_{\mathrm{S}}=6 \mathrm{~V} \text { and } \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=2 \Omega .
$$

Use the above values for all parts of this question.

a. (6 pt) Consider the circuit in Figure 1. Find I_{3} by first applying source transformation once and then use any method of your choice to find I_{3}.
b. (6 pt) Use nodal analysis to obtain V_{a} in Figure 2. Then, use V_{a} and the resistance value(s) to find I_{3}.

Figure 2
c. (6 pt) Use mesh analysis to find all mesh currents in Figure 3. Then, use the mesh current(s) to find I_{3}.

d. (6 pt) In this part, we will find the Norton equivalent of the circuit (with respect to terminals a and b) in Figure 4.

Figure 4
i. Draw the circuit that is used to find I_{N} and then find I_{N}.
ii. Draw the circuit that is used to find R_{N} from Figure 4 and then find R_{N}.
iii. Draw the Norton equivalent of the circuit in Figure 4.
e. (5 pt) Use your answers from part (d) to determine I_{3} in Figure 1.
3. (33 pt) In this question, you must use the specified techniques to solve the problem. There will be no credit given if you do not follow the instructions. As always, your score depends strongly on your explanation of your answer. If the explanation is incomplete, zero score may be given even when the final answer is correct.

Use the following values for all parts of this question:

$$
\mathrm{V}_{\mathrm{S}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=2 \mathrm{~A}, \mathrm{R}_{1}=\mathrm{R}_{2}=3 \Omega \text {, and } \mathrm{R}_{3}=\mathrm{R}_{4}=6 \Omega
$$

Consider the circuit in Figure 5.

Figure 5
a. (5 pt) Use source transformation(s), resistor combination(s), source combination(s) and one application of the voltare divider formula to find i. current
b. (8 pt) We will now use superposition theorem to find i.
i. (4 pt) Draw the two sub-circuits resulted from applying superposition theorem.
ii. (2 pt) Find i in each of the sub-circuit in part (i) using any technique(s) of your choice.
iii. (2 pt) Use the values of i from part (ii) to find i in Figure 5.
c. (5 pt) Use nodal analysis to find $\mathbf{V}_{\mathbf{a}}$ and $\mathbf{V}_{\mathbf{b}}$ in Figure 5 and then find i from V_{b}.
d. $(5 \mathrm{pt})$ Determine R_{th} and V_{th} at terminals b-c of the circuit in Figure 6.

e. $(5 \mathrm{pt})$ Use your answers from part (d) to help determine i in Figure 5.
f. (3 pt) Determine R_{N} and I_{N} at terminals b-c of the circuit in Figure 6.
g. (2 pt) Reconsider the circuit in Figure 5, how long does it take for R_{3} to consume 60 J .
4. (6 pt) Consider the circuit in Figure 7. Suppose

$$
\mathrm{V}_{\mathrm{S}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=2 \mathrm{~A}, \mathrm{R}_{1}=\mathrm{R}_{2}=3 \Omega, \text { and } \mathrm{R}_{4}=6 \Omega .
$$

Figure 7
Find the value of the load resistance R_{L} for maximum power transfer (to the load). Also, find the corresponding amount of maximum power.
5. (15 pt) Consider the ideal op amp circuit shown in Figure 8.

a. (5 pt) State two important characteristics of the ideal op amp. (What are the two rules that we can use to analyze op amp circuit?)

$$
\begin{aligned}
& \text { (1) } i_{+}=i_{-}=0 \\
& \text { (2) } v_{-}=v_{+}
\end{aligned}
$$

b. (5 pt) Find $v_{\text {in }}$ in terms of v_{1}, v_{2}, R_{1}, and \mathbf{R}_{2}.
c. $(5 \mathrm{pt})$ Find v_{o} when

$$
\begin{gathered}
\mathrm{R}_{1}=5 \Omega, \mathrm{R}_{2}=3 \Omega, \mathrm{R}_{3}=7 \Omega, \mathrm{R}_{4}=7 \Omega, \\
\mathrm{~V}_{1}=20 \mathrm{~V}, \mathrm{~V}_{2}=12 \mathrm{~V} .
\end{gathered}
$$

\qquad ID \qquad
6. (4 pt) In this question, you must use the specified techniques to solve the problem. There will be no credit given if you do not follow the instructions. As always, your score depends strongly on your explanation of your answer. If the explanation is incomplete, zero score may be given even when the final answer is correct.

Consider the circuit in Figure 9.
Suppose $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=5 \Omega$, and $\mathrm{R}_{5}=11 \Omega$.

Here, we introduce a 1 A current source

By Ohm's law,

$$
\begin{aligned}
& V_{s}=(1 A) \times R_{e q} \\
& R_{e q}=\frac{V_{s}}{1 A}
\end{aligned}
$$

a. $(2 \mathrm{pt})$ Find R_{eq} using nodal analysis.

$$
\begin{aligned}
& \left.\begin{array}{ll}
K C L @ \operatorname{node} A: & -1+\frac{V_{A}-V_{B}}{5}+\frac{V_{A}-V_{C}}{5}=0 \\
K C L @ \operatorname{node} B: & \frac{V_{B}-V A}{5}+\frac{V_{B}-V_{C}}{11}+\frac{V_{B}}{5}=0 \\
K C L @ \operatorname{node} C: & \frac{V_{C}-V_{A}}{5}+\frac{V_{C}-V_{B}}{11}+\frac{V_{C}}{5}=0
\end{array}\right\} \begin{array}{cc}
\text { Calculator } & V_{A}=5,
\end{array} \quad V_{B}=\frac{5}{2}, \\
& \text { Therefore, } R_{\text {eq }}=\frac{V_{s}}{1 \Omega}=\frac{V_{A}}{1 \Omega}=5 \Omega
\end{aligned}
$$

b. (2 pt) Find R_{eq} using mesh analysis.

Mesh $1: i$ directly passe though the "1 A^{2} current source:

$$
i=1 A
$$

Calculator
Mesh $\times 2$: Apply KVL around mesh $x \times 2$

$$
\begin{aligned}
& -5 \times\left(i_{2}-i_{1}\right)-5 i_{2}-11\left(i_{2}-i_{3}\right)=0 \\
& \text { Mesh } 3 \ldots \\
& \begin{array}{c}
V_{A}=-\left(i_{3}-i_{2}\right) R_{3}-\left(i_{2}-i_{1}\right) R_{1}=5 \mathrm{~V} . \\
\text { Page } 10 \text { of } 11
\end{array} \\
& \text { Therefore, } R_{\text {eq }}=\frac{V_{s}}{1 \Omega}=\frac{V_{A}}{1 \Omega}=5 \Omega
\end{aligned}
$$

7. (2 pt) Suppose you want to use a 70Ω resistor but you only have two 60Ω resistors, one 30Ω resistor, and one 300Ω resistor. How would you connect the four resistors to get 70Ω ?
Draw how the four resistors are connected and show your calculation of the equivalent resistance.
8. $(5 \mathrm{pt})$ Consider the circuit in Figure 10. The resistance values of the resistors are unknown.

Figure 10
Suppose $\mathrm{I}_{3}=1 \mathrm{~A}$ when $\mathrm{V}_{\mathrm{S}}=12 \mathrm{~V}$. Find I_{3} when $\mathrm{V}_{\mathrm{S}}=18 \mathrm{~V}$. Make sure that you provide enough justification for your answer.

